In a study published last week, scientists from USC,University of Southern California, Washington University in St. Louis and Stanford University demonstrated that by chemically linking fentanyl to the sodium pockets that exist within nerve cell receptors, they could block the drug’s harmful side effects and still reduce pain.
“In its current form, fentanyl is like a weapon of mass destruction,” said Vsevolod Katritch, a computational scientist at the Bridge Institute at USC Michelson Center for Convergent Bioscience and a corresponding author of the study. “Our new collaborative work suggests that we could redesign the drug in such a way that we convert this frequent overdose killer to a much more benign but still effective analgesic.
”Drugs of all kinds are designed to target certain receptors on nerve cells known as GPCRs, or G-protein coupled receptors, which act as signal transmitters. These receptors are like switches that mediate a drug’s intended effect on the brain and body, but also the unintended side effects.
Katritch and his collaborators said that although further study is needed to prove that their less harmful version of fentanyl will work in humans, the results have opened a new door for scientists to potentially improve the safety of painkillers.
“We are desperately looking for ways to maintain the analgesic effects of opioids, while avoiding dangerous side effects such as addiction and respiratory distress that too often lead to death,” said corresponding author Susruta Majumdar of Washington University in St. Louis. “Our research is still in its early stages, but we’re excited about its potential for leading to safer pain-relieving drugs.”